PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

III B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 STRUCTURAL ANALYSIS - II
(CE Branch)

Max. Marks: 60
Time: 3 hours
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M),

Q.No.		Questions	Marks	CO	KL
1.	a)	Differentiate two hinged and three hinged arches.	$[2 \mathrm{M}]$	1	2
	b)	What is the nature of force in cables?	$[2 \mathrm{M}]$	2	1
	c)	What is the difference between portal method and cantilever method?	$[2 \mathrm{M}]$	3	2
	d)	Define carry over factor.	$[2 \mathrm{M}]$	4	1
	e)	What is formula for storey moment in Kani's method?	$[2 \mathrm{M}]$	5	1

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No	Questions	Marks	CO	KL
UNIT-I				
2.	A 3 hinged arch of span 40 m and rise 8 m carries concentrated loads of 200 kN and 150 kN at distances of 8 m and 16 m respectively from the left end and UDL of $50 \mathrm{kN} / \mathrm{m}$ on the right half of the span. Find the vertical reaction and horizontal thrust.	[10M]	1	3
OR				
3.	A parabolic arch hinged at the ends has a span of 60 m and a rise of 12 m . A concentrated load of 8 kN acts at 15 m from the left hinge. Calculate the horizontal thrust and the reactions at the hinge. Also calculate the bending moment at the section.	[10M]	1	3
UNIT-II				
4.	The three hinged stiffening girder of suspension bridge of 100 m span subjected to two-point load 200 kN each 20 m and 40 m respectively from the left-hand hinge. Determine B.M and S.F. in the girder at section at 30 m from left end. Also determine the maximum tension in the cable which has a central dip of 8 m .	[10M]	2	3
OR				
5.	A suspension cable of horizontal span 100 m is supported at two different levels. The left support is lower than right support by 3.5 m . The dip to the lowest point of the cable below the left support is 6 m . The cross-section area of the cable is $4000 \mathrm{~mm}^{2}$. Find the UDL that can be carried by the cable, if the maximum stress is $830 \mathrm{~N} / \mathrm{mm}^{2}$.	[10M]	2	3
	UNIT-III			

6.	Analyze the building frame shown in figure for horizontal loads using cantilever method.	[10M]	3	4
OR				
7.	Use the portal method, analyze the building frame subjected to horizontal forces (due to wind) as shown in figure. Sketch the bending moment. diagram.	[10M]	3	4
UNIT-IV				
8.	Analyze the continuous beam loaded as shown in figure by the method of moment distribution. and draw BMD. EI = Constant.	[10M]	4	4
OR				
9.	Analyze the continuous beam loaded as shown in figure by the method of moment distribution. and draw BMD. EI = Constant.	[10M]	4	4

(10.

